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Abstract. Microcanonical Monte Carlo simulations have been implemented in the two-dim-
ensional (2D) q-state Potts model. The ergodicity of this simulation technique for the Potts model
is studied. It does not seem to depend on the value of q. A lack of ergodicity for small values of
the system energy is reported and discussed. It has been found that the temperature dependences
of physical quantities exhibit an ‘S’-shaped nature at the first-order transition. The degree of ‘S’-
shaped nature was enhanced by increasing q and reducing the system size. We believe on the basis
of our computer simulations that the ‘S’ shape represents the equilibrium behaviour of a finite
isolated system.

1. Introduction

Among the various computer simulation methods for the microcanonical ensemble [1–7], the
microcanonical Monte Carlo (MC) simulation technique proposed by Creutz [8] appears to be
particularly simple and fast and hence is probably the best. Here, the system energy is an input
parameter and the temperature is obtained through the simulations. Among the various spin
models, this microcanonical MC simulation technique has been applied to the Ising model
[8–14] and the XY -model [15–17]. Ergodicity has been demonstrated empirically for these
models [10, 15]. The system complexity is expected to give rise to ergodicity. Some degree of
randomness is generally incorporated in the simulation procedure, which helps in achieving
ergodicity. Renormalization-group calculations [18–20] have also been added to this technique
conveniently [21]. The full potential of this technique is yet to be explored in connection with
various statistical systems and situations.

In this paper, we study the first-order transition within the finite-size two-dimensional (2D)
q-state Potts model [22, 23] and establish the ergodicity of this technique by comparing with
exact results. This study is also motivated by the fact that the Potts model undergoes a well
studied first-order transition and provides a system of increasing complexity as q increases.
Therefore, one can study the role of system complexity in achieving ergodicity, and here we
specify what one means by system complexity in this particular method of microcanonical MC
simulation [8].

The Potts model has been used to gain an understanding of the phase transitions in some
well defined compounds. Moreover, first-order phase transitions play an important role in the
statistical mechanics of many physical phenomena of finite systems—such as the evolution
of the early universe, fragmenting nuclei, fragmenting atomic clusters and melting phase
transitions in van der Waals clusters: in this context, microcanonical simulations play an
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important role. In the past, considerable efforts have been made to develop refined numerical
methods for their description [24–36]. The energy as a function of temperature for such
systems shows an ‘S’ shape at the first-order transition. Therefore, the applicability of this
microcanonical MC simulation technique to such situations is also explored.

It is also well known that metastability gives rise to an ‘S’ shape [37]. For instance, it
arises in weak-long-range-force models. In the limit of infinite interaction range, the free-
energy cost of a change in the equilibrium state is extensive, as a function of the system
volume, and mean-field approximation predicts that metastability lifetimes are infinite in the
thermodynamic limit. However, in the context of this paper, we have not considered such
situations, for convenience.

The paper is organized as follows. In section 2, we describe the simulation procedure.
The ergodicity in the computer simulations is discussed in section 3. The results are given in
section 4. In section 5, we examine the coexistence region. The conclusions are presented in
section 6.

2. The simulation procedure

The Hamiltonian of the q-state Potts model is given by

H = −J
∑

(i,j)

δ(σiσj ) (1)

where δ is the Kronecker delta, J is the interaction strength (>0 for the ferromagnetic case)
and the sum is over all the nearest neighbours. The spin at the ith site, σi , can take any one of
the q different values. The Potts model has a first-order transition for q > 4, and a higher-order
transition for q � 4.

We considered a 2D square lattice having 100, 225, 400, 900 or 3600 spins with periodic
boundary conditions and simulated these systems with different values of q > 4 (i.e., q = 10,
20 and 30). Initially all the spins are aligned in one state (i.e., state 1). This corresponds to the
lowest energy state of the system. An extra degree of freedom called the ‘demon’ is allowed
to move from one spin site to another sequentially on the lattice as it exchanges energy with
spins, changing the microstate. The simulation starts with the demon having a fixed amount
of energy (Ed). This demon energy when added to the system energy (Es) corresponds to
the total energy of the system at the lowest desired temperature. A random number in the
interval [1, q] is generated, which corresponds to a possible new state of the spin. The change
in energy is calculated corresponding to this change in spin state. A positive change in energy
is allowed if the demon has sufficient energy. Otherwise, the old spin state is retained. A
negative or zero change in energy is always accepted and the demon receives that amount of
energy from the spin system. The criterion of choosing the random number and accepting the
change of configuration as described above satisfies a restricted form of detailed balance [8].
The demon here takes energy values that are integral multiples of J . Therefore, we find the
following equation, valid for the Potts model, to determine the system temperature from the
average demon energy [8, 14]:

kBT = 1/ln(1 + 〈Ed〉−1) (2)

where kB is the Boltzmann constant. (Hereafter we replace kBT /J by T and E/J by E for
simplicity.) Following Challa, Landau and Binder [25] we define the order parameter, m, as
follows:

m = [q(Nmax/N)− 1]/(q − 1) (3)
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where: N1 is the number of spins in state 1, N2 is the number in state 2 etc; Nmax is the
maximum of N1, N2, . . . , Nq ; and N is the total number of spins.

The equilibration and the nature of the fluctuation of the order parameter with this algorithm
are shown in figure 1. From this figure it is evident that 1×105 MC steps per spin (MCSS) are
sufficient for equilibration and averaging of the physical quantities. We, however, use 4 × 105

MCSS for equilibration and 4×105 MCSS for averaging for a 60×60 spin system. The physical
quantities calculated after each MCSS were used for the averaging. The simulations were each
constituted of a heating run followed by a cooling one. During the heating (cooling) cycle,
energy was added (subtracted) to (from) the spin system through the demon. The difference
between the results for the heating and cooling runs was typically less than one per cent. The
physical quantities computed are averages of those for the heating and cooling runs. The
standard deviation for the temperature is typically around one per cent. In the next section, we
study the ergodicity of this simulation technique.

Figure 1. The order parameter as a function of the number of MCSS for the q = 10-state Potts
model on a 30×30 lattice. The initial configuration was with all spins in state 1. The corresponding
system energy is −1150 and the temperature is 0.703. The bold curve shows the equilibration.
Each point on this curve represents an average over all configurations starting from the first MCSS
up to a given MCSS. The light curve represents the instantaneous values of m plotted after every
5000 MCSS, showing the fluctuations.

3. The ergodicity

In equilibrium, the demon energy was found to be approximately distributed according to
Boltzmann’s law. In this context, the recent study of Cruz et al [6] of the local microcanonical
over-relaxation (LMO) technique is of interest. They found that the LMO technique can lack
ergodicity when the updating is sequential and becomes ergodic when the updating is random.
In our study, the randomness is incorporated in the choice of the spin state. The simulations,
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however, did not give an exponential distribution of Ed for small values of the system energy.
A random choice of the spin site also does not help the situation. This is illustrated in figure 2.
This is a drawback, especially for smaller system sizes, as it limits how low the temperature
can be, when the system energy can only take discrete values. For small values of the system
energy, there are fewer energy states accessible to the demon (figure 2). In order to determine
the energy value above which the distribution is exponential, we studied the nature of the
demon energy distribution as a function of system energy. To this end, we have calculated
χ2/(n − 2) for the least-squares straight-line fitting of ln(f ) versus Ed for different system
energies (−194 to −165 units) for a 10 × 10 spin system with q = 10 states. This is displayed
in figure 3. Here, n corresponds to the number of points used for the least-squares fitting for
which f > 100. It is seen in figure 3 that χ2/(n−2) reduces to an acceptable value for system
energies greater than −179.

Figure 2. The distribution of demon energies over 5 × 105 MCSS after the 5 × 105 MCSS used
for the equilibration for sequential updating (©) and random updating (×). The simulations are
carried out on a 10 × 10 spin system with q = 10 states. The ordinate represents the natural
logarithm of the number of times out of 5×107 steps that the demon is at the corresponding energy
of 0, J , 2J , 3J , 4J , 6J and 10J . The total energy is −190. Note that the lowest total energy is
−200. The straight lines connecting the data points are to guide the eye.

One can understand this as follows. For system energies smaller than −179, the demon
cannot have energy that is sufficiently small compared to the total energy ET (=Es + Ed) [8]
due to the discrete symmetry of the model. Therefore, one does not obtain an exponential
distribution of Ed . However, such a situation does not arise in models with continuous
symmetry [15] such as the XY -model [38–48]. One can also look at the situation from a
different point of view. In the microcanonical MC simulations, the system acts as a heat bath
for an individual spin. However, examination of the spin configurations revealed that in the
Potts model the spin fluctuation is localized in small regions and the system cannot act as a heat
bath. Therefore, ergodicity is not obtained. In contrast, for theXY -model, the spin fluctuation
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Figure 3. χ2/(n− 2) (×), T (�) and n (+) as functions of system energy for random updating of
the spins. The © represent χ2/(n− 2) for sequential updating of the spins. Here, 5 × 105 MCSS
for equilibration with 5 × 105 MCSS for averaging of the data were used for the simulations. The
simulations are carried out on a 10 × 10 spin system with q = 10 states. It may be noted that
the ground-state energy is −200 units. The straight lines connecting the data points are to guide
the eye. An acceptable exponential distribution is obtained for system energy above −179. This
corresponds to a number of independent accessible energy states of the system of about 20. It
is seen from the figure that the ergodicity does not differ noticeably for random and sequential
updating.

is dissipated over the entire spin system and the system can still act as a heat bath even for
small values of system energies. In order to check this situation, we simulated the 2D classical
XY -model having 30 × 30 spins using the present microcanonical MC simulation technique.
We used a total energy of ET = 5, above the ground state (ET = 0), which corresponds to a
temperature of 0.011. Examination of the spin configurations confirmed smooth dissipation
of the spin fluctuation in the 2D XY -model. The demon energy distribution was found to be
exponential for Ed up to about 0.12 (figure 4). The ergodicity was found to be excellent for
the 2D XY -model [15, 17].

Next we try to understand what determines the ergodicity. For this purpose, we examine
how the ergodicity depends on q. As before, we calculated χ2/(n− 2) as a function of system
energy for different values of q. The simulations were carried out on a 10 × 10 spin system
for q = 10, 30 and 50. It is seen that the ergodicity does not seem to depend on the value
of q (figure 5). The reason behind this may be that, although the number of accessible states
(or spin configurations) increases with q for a given Es , the number of independent accessible
energy states does not change with q forEd andEs in combination. Therefore, the measure of
system complexity which generates the ergodicity is the number of accessible energy states.
In section 4, we compare the present microcanonical MC simulation results with the exact
results.
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Figure 4. The distribution of demon energies over 1×105 MCSS after the 1×105 MCSS used for
the equilibration for the 2D XY -model. The simulations are carried out on a 30 × 30 spin system
with periodic boundary conditions. The initial configuration was with all spins parallel to each
other. The ordinate represents the natural logarithm of the number of times out of the 9 ×107 steps
that the demon is in the corresponding energy bin of width 0.0125. The straight line represents the
least-squares fitting of the exponential distribution, giving a temperature of 0.011.

4. Results

Figures 6 and 7 display the temperature dependences of the total energy per spin and average
order parameter, respectively. The transition region is seen to be ‘S’ shaped in nature. We
define the middle of the two extrema in the ‘S’-shaped region as the transition temperature.
We observed that Tc increases on reducing the system size, which is probably to be expected
from finite-size scaling theory [26, 49–51]. We found that the first-order transition occurs at
Tc = 0.701, 0.589 and 0.536 for q = 10, 20 and 30, respectively, for a 30 × 30 spin system.
This can be compared with the exact values of Tc = 0.7012, 0.5883 and 0.5352 for q = 10, 20
and 30, respectively, which are obtained from Baxter’s formula [52]:

kBTc/J = [ln(1 +
√
q)]−1. (4)

Baxter [52] has given an exact expression for the latent heat:

(E+ − E−)/J = 2(1 + 1/
√
q) tanh(θ/2)

∞∏

n=1

[tanh(nθ)]2 (5)

where 2 cosh θ = √
q. One can determine E+ and E− using equation (5) together with the

expression given by Kihara, Midzuno and Shizume [53]:

(E+ + E−)/2J = −[1 + 1/
√
q]. (6)

The values ofE+ (E−) are −0.9682 (−1.6643), −0.6265 (−1.8207) and −0.4874 (−1.8778)
for q = 10, 20 and 30, respectively. The exact result for the order parameter discontinuity at
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Figure 5. χ2/(n− 2) as a function of system energy for q = 10 (+), q = 30 (×) and q = 50 (�)
over 5 × 105 MCSS after the 5 × 105 MCSS used for the equilibration. The © represent q = 50
over 2.5 × 106 MCSS after the 2.5 × 106 MCSS used for the equilibration. The ergodicity does
not seem to depend on q. It may be noted that the ground-state energy of a 10 × 10 spin system is
−200 units. The straight lines connecting the data points are to guide the eye. Random updating
was used for these simulations.

Tc is given by [54, 55]

 m = 1 − q−1 − 3q−2 − 9q−3 − 27q−4 − · · ·. (7)

The values of  m for q = 10, 20 and 30 are 0.8571, 0.9412 and 0.9630, respectively. The
values of E+, E− and  m are marked in figures 6 and 7 for comparison, and agree very well
with the exact results.

5. The coexistence region

In this section, we examine the ‘S’ shape of the coexistence region observed in the simulations.
Harris [12] has studied the first-order transition in an Ising-like system using the micro-
canonical MC simulations of Creutz and has also observed a similar shape. We estimated
the width of the transition (δTc) as the temperature difference between the two extrema of
the ‘S’-shaped region. We have found that δTc increases on increasing q and on reducing the
system size. For instance, δTc increased from 0.020 to 0.035 as q was increased from 10 to 30
for a 30 × 30 spin system. For a fixed q (q = 10), δTc was also found to increase from 0.011
to 0.038 as the system size was reduced from 60 × 60 to 10 × 10. We studied the coexistence
region further for possible effects due to metastability by increasing the number of MCSS for
equilibration and averaging. To this end, a comparison of the computed value of 〈T 〉 has been
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Figure 6. The temperature dependence of the total energy per spin for q = 10 (×), 20 (+) and
30 (�) states of a 30 × 30 spin system and q = 10 states (©) of a 60 × 60 spin system. The exact
values of E+ and E− are marked on the y-axis. The lower set of arrows are for q = 10; the middle
set are for q = 20; the upper set are for q = 30.

carried out for a 10 × 10 spin system by simulating it over 2 × 105 and 1 × 106 MCSS. The
ensemble averages of the temperatures and δTc were found to have almost the same values
even after increasing the number of MCSS significantly.

The ‘S’-shaped nature of the coexistence region of a first-order transition for a finite
system has been observed in microcanonical molecular dynamics simulations [56–59] and
microcanonical MC simulations [36, 60]. We have also simulated the first-order transition in
the 2D extended XY -model [61] using the present microcanonical MC simulation technique
and have also obtained the ‘S’ shape [16]. (It has been noted [60] that in the molecular dynamics
simulations of Jellinek et al [62], the ‘S’ shape disappears when long-time averages are taken.)
In contrast, the canonical MC simulations give rise to a smearing of the coexistence region
for models with discrete symmetry [24–26] and with continuous symmetry [61, 63]. The
canonical Monte Carlo simulations do not probe correctly the transition region of a first-order
transition, because the temperature is predefined. The microcanonical MC simulations probe
the coexistence region of the first-order transition correctly [16]. Therefore, the question arises
of whether the ‘S’ shape represents the equilibrium behaviour or not. We note here that system
is definitely finite in the present simulations, although a periodic boundary condition has been
used to mimic an infinite system. We believe from our computer simulations that the ‘S’ shape
does represent the equilibrium behaviour of a finite isolated system.



Microcanonical Monte Carlo simulations 2241

Figure 7. The temperature dependence of the average order parameter for q = 10 (×), 20 (+) and
30 (�) states of a 30 × 30 spin system and q = 10 states (©) of a 60 × 60 spin system. The exact
values of  m are marked on the y-axis. The lower arrow is for q = 10; the middle arrow is for
q = 20; the upper arrow is for q = 30.

6. Conclusions

In conclusion, we have carried out microcanonical MC simulations on the 2D q-state Potts
model. The ergodicity of this technique for this model is studied. It does not seem to depend
on the value of q. A lack of ergodicity, which occurs in a particular situation, when the system
energy is discrete as a function of temperature, is reported and discussed. This occurs only for
small values of the system energy. This is a drawback, especially when the system size is small,
as it limits how low the temperature can be. It has been found that the temperature dependences
of the physical quantities exhibit ‘S’-shaped natures at the first-order transition. The degree of
‘S’-shaped nature was enhanced by increasing q and reducing the system size. We explain here
that the ‘S’ shape observed in microcanonical MC simulations is the equilibrium behaviour of
a finite isolated system exhibiting a first-order transition. This study is different from that of
the ‘spinodal’, which is associated with the kinetics of a system.
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